ACM Transactions on

the Web (TWEB)

Latest Articles

Analyzing Privacy Policies at Scale: From Crowdsourcing to Automated Annotations

Website privacy policies are often long and difficult to understand. While research shows that Internet users care about their privacy, they do not have the time to understand the policies of every website they visit, and most users hardly ever read privacy policies. Some recent efforts have aimed... (more)

Mining Abstract XML Data-Types

Schema integration has been a long-standing challenge for the data-engineering community that has received steady attention over the past three decades. General-purpose integration approaches construct unified schemas that encompass all schema elements. Schema integration has been revisited in the past decade in service-oriented computing since the... (more)

Test-Based Security Certification of Composite Services

The diffusion of service-based and cloud-based systems has created a scenario where software is often made available as services, offered as... (more)

New Phone, Who Dis? Modeling Millennials’ Backup Behavior

Given the ever-rising frequency of malware attacks and other problems leading people to lose their files, backups are an important proactive... (more)


About TWEB

The journal Transactions on the Web (TWEB) publishes refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies.

The scope of TWEB is described on the Call for Papers page. Authors are invited to submit original research papers for consideration by following the directions on the Author Guidelines page.

read more
Forthcoming Articles
FusE: Entity-centric Data Fusion on Linked Data

A lot of current web pages include structured data which can directly be processed and used. Search engines, in particular, gather that structured data and provide question answering capabilities over the integrated data with an entity-centric presentation of the results. Due to the decentralized nature of the web, multiple structured data sources can provide similar information about an entity. But data from different sources may involve different vocabularies and modeling granularities, which makes integration difficult. We present FusE, an approach that identifies similar entity-specific data across sources, independent of the vocabulary and data modeling choices. We apply our method along the scenario of a trustable knowledge panel, conduct experiments in which we identify and process entity data from web sources, and compare the output to a competing system. The results underline the advantages of the presented entity-centric data fusion approach.

Cashtag piggybacking: uncovering spam and bot activity in stock microblogs on Twitter

Microblogs are increasingly exploited for predicting prices and traded volumes of stocks in financial markets. However, it has been demonstrated that much of the content shared in microblogging platforms is created and publicized by bots and spammers. Yet, the presence (or lack thereof) and the impact of fake stock microblogs has never systematically been investigated before. Here, we study 9M tweets related to stocks of the 5 main financial markets in the US. By comparing tweets with financial data from Google Finance, we highlight important characteristics of Twitter stock microblogs. More importantly, we uncover a malicious practice ? referred to as cashtag piggybacking ? perpetrated by coordinated groups of bots and likely aimed at promoting low-value stocks by exploiting the popularity of high-value ones. Among the findings of our study is that as much as 71% of the authors of suspicious financial tweets are classified as bots by a state-of-the-art spambot detection algorithm. Furthermore, 37% of them were suspended by Twitter a few months after our investigation. Our results call for the adoption of spam and bot detection techniques in all studies and applications that exploit user-generated content for predicting the stock market.

All ACM Journals | See Full Journal Index

Search TWEB
enter search term and/or author name